Exponential Stability and Periodicity of Fuzzy Delayed Reaction-Diffusion Cellular Neural Networks with Impulsive Effect

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Stability of Impulsive Delayed Reaction-Diffusion Cellular Neural Networks via Poincaré Integral Inequality

and Applied Analysis 3 Denote by u(t, x) = u(t, x; t 0 , φ), u ∈ Rn, the solution of system (5)-(6), satisfying the initial condition u (s, x; t 0 , φ) = φ (s, x) , t0 − τ ≤ s ≤ t0, x ∈ Ω, (7) and Dirichlet boundary condition u (t, x; t 0 , φ) = 0, t ≥ t 0 , x ∈ ∂Ω, (8) where the vector-valued function φ(s, x) = (φ 1 (s, x), . . . , φ n (s, x))T is such that ∫ Ω ∑n i=1 φ2 i (s, x)dx is bounded ...

متن کامل

Stability Analysis of Impulsive BAM Fuzzy Cellular Neural Networks with Distributed Delays and Reaction-diffusion Terms

In this paper, a class of impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms is formulated and investigated. By employing the delay differential inequality and inequality technique developed by Xu et al., some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellu...

متن کامل

Exponential stability of impulsive neural networks with time-varying delays and reaction-diffusion terms

Impulsive bidirectional associative memory neural network model with time-varying delays and reaction-diffusion terms is considered. Several sufficient conditions ensuring the existence, uniqueness, and global exponential stability of equilibrium point for the addressed neural network are derived by M-matrix theory, analytic methods, and inequality techniques. Moreover, the exponential converge...

متن کامل

Exponential stability of impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms

and Applied Analysis 3 In the light of (H1)–(H4), it is easy to see that problems (1)-(2) admit an equilibrium point u = 0. Definition 1. The equilibrium point u = 0 of problems (1)(2) is said to be globally exponentially stable if there exist constants κ > 0 andM ≥ 1 such that 󵄩󵄩󵄩󵄩u (t, x; t0, φ) 󵄩󵄩󵄩󵄩Ω ≤ M 󵄩󵄩󵄩󵄩φ 󵄩󵄩󵄩󵄩Ω e −κ(t−t 0 ) , t ≥ t 0 , (10) where ‖φ‖ 2 Ω = sup t 0 −τ≤s≤t 0 ∑ n i=1 ∫ Ω φ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2013

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2013/645262